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ABSTRACT

This is the second-qUarterly report covering the work ﬁerformed under NASA
contract NAS~9-5424 duripg'the period from March 15, 1966 through June 14,
1966. The objective of.this,program is to demonstrate a flight type configu-
ration of an Axially Conducting Engine (ACE) in which pyrolytic graphite (PG)
wedges, restrained by én elastic structure, form the combustion chamber and

nozzle of the engine.

During this quartef,~fabri¢ati6n of parts for the first engine build was

completed and the first test series was accomplished.
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I. INTRODUCTION

A. Program chpe'and‘ObjectiVé

A thirteen month program'is being conducted for the preliminary development
of a segmented, axially conducting, 100 pouﬁd thrust pyrolytic graphite (PG)
rocket engine. The program'séhedule is shown in Figure l=1. The development
plan includes thermal and.structural,ana1YSes, design verification tests of
two rig engines, two flight'configﬁration'engine tests for final design
demonstration, and an éxaminétion of engiﬁe compatibility with advanced pro-
pellants. The delivery:of;a flight configﬁration engine to NASA ﬁanned

Spacecraft Center will»occur at the end of the fourteenth month.

The objective of this progrém is to demonstrate the feasibility of the Axially
Conducting Engine (ACE) concept for reaction control engine applications.
Ultimaﬁely, the engine will be capable of buried and/or‘exposed installation
on a spacecraft and will be capable of use with the fluorine family of

advanced propellants,
The design conditions for the flight type ACE engine are as follows:

Vacuum Thrust: 100 1b with 40:1 nozzle
area ratio

Chamber Pressure: 100 psia

Propellant Inlet Pressure: 195 + 5 psia

Fuel: Monomethylhydrazine

Oxidizer: Nitrogen Tetroxide
Oxidizer/Fuel Ratiof 1.6:1

Specific Impulse: 290 seconds when operating with

40:1 area ratio nozzle for pulse
‘pulses of 1.0 second duration

or longer.

14
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Minimum Impulse Bit: 0.5 1b-sec

Life: 1000 seconds total time includ-

ing a 500 second continuous run.

Weight: Not specified but all efforts
shall be made to attain a mini-

nmun value.

The Curtiss-Wright designation for the engine being developed under this
contract is WLR-23.
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B. Summary of Program Status

The first quarterly report described the progress of the program through the
rig engine design (Phase I) and the test of the watchband test specimen
(Phase II - Task 1). Figure 1-1 shows the program schedule and the general

status of the engine at the end of the second quarter.

Prior to rig engine testing, two versions of a low £i11 time 16~port injector
were evaluated for possible use with the WLR-23 rig engine. These were
direct copies of'high fill time injectors, used during pre-contract investi-
gations, with the exception of the upstream manifolding. The manifold was
reduced in size to achieve fill times consistent with contractual response
requirements. The high pressure drop version of the injector appeared to be
satisfactory in stability characteristics and performance and was selected for

use with the rig engine.

All detail parts required for the build of the first WLR-23 rig engine were
available by the end of March and assembly of the engine was initiated.

While expanding the watchband on a tapered plug for installation ovér the
wedge assembly several cracks occurred at the slot root locations. Investi-
gations showed that the cause was substandard material. The calculated
watchband installation stresses were within a few percent of the ultimate
tensile strength of the billet from which the part was machined. New forgings
were procured and were found to be satisfactory by metallurgical and Zyglo

inspection and a second watchband of the same design was fabricated.

The first rig engine was built and a test series was initiated in mid-May to
evaluate the initial engine design. During a 60 second firing it was observed
that the deflection probe readings were in excess of predicted values. Subse-
quent analysis of this data showed that the engine inner wall temperature was

running substantially hotter than the design values,

It appears that the differences in manifolding between the low fill time
injector currently being used and the high fill time injector that provided
empirical data for the design. have caused a combustion phenomenon (as yet un-

recognized) which resulted in an increased heat load to the chamber.
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The higher temperatures caused overstressing of both the watchband and the
wedges at the land locations. Crushing of the land material and permanent
deformation of the watchband occurred. The test series was terminated since

the land crushing caused leakage in the engine.

A program was then undertaken with the copper chamber to determine the effect
on chamber wall temperature of incréasing the spray cooling flow rate. This
program is now in ﬁrocess;and to date indicates that an increase in spray
cooling flow to a value of approximately 0.06 1lb per second is required to
achieve satisfactory temperature levels with the existing injector. This
requires some adjustment in the overall design point of the fixed injector
configuration to preclude the possibility of running into a zone of instability
that exists at an injector O/F ratio of 2.2 - 2.4. ThiS'effort is continuing

into the third quarter.

The second series of tests on the ACE rig engine will be run when a suitable
spray cooling configuration is achieved. The wedge assembly has been completed
and the installation of the watchband is being held pending final outcome of
the copper engine tests as some adjustment of the pinch fit may be required.

It is estimated that the start of the second series of rig engine tests can be
initiated early in July. |
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II.  ENGINE TESTING

A. Injector Development

Two versions of‘a low fill time injector were designed and fabricated for
possible use with the WLR-23 rig engine. One versioﬁ (ES156903N1) incorpo-
rated orifices sized to produce pressure drops of 40 psi for the oxidizer
and 78 psi for the fuel. This injector is identical to the high fill time
injector (ES156732) used during the initial copper engine test runs 23-1 and
23-2 except for reduced inlet manifold volume. A variation of the low fill
time design (ESlS6903N2) reduces the fuel orifice pressure drop to meet the
target feed pressure requirements. Both injectors were evaluated to deter-

mine which would be used for the ACE rig engine test series.

ES156903N2 Test Series - The low AP version was tested at design point and

the results are shown in Table I and Figures 2-1 and 2-2 ., The traces show
that the general amplitude of the combustion chamber pressure fluctuations was
approximately 10%. 1In addition, random peaks were observed as high as 80 psi.
It was concluded after these two initial tests that this version of the injec-

tor was not suitable for use with the WLR-23 engine.

ES156903N1 Test Series - The high A P version of the 16-port low fill in-
jector was initially subjected to 25 tests without spray cooling. Table IL
lists the pertinent run parameters with notes regarding stability and
Figures 2-3 through 2-27 show chamber pressure and propellant inlet pressure
traces. Runs 23-5, -7, =17, -21, -22 and -27 approximate the eﬁgine design
point and are completely acceptable from the standpoint of performance and
stability characteristics. Other points were run to obtain a stability map,
Figure 2-28, to provide an indication of the limits of satisfactory injector

operation.

A series of tests, Runs 23-30 through 23-45, were then made with spray
cooling to obtain similar information. Table 1II lists the run para-
meters and Figures 2-29 through 2-44 show traces recorded during the
tests. Runs 23-30, -34, -38 and - 43 approximate the design point require-

ments and again demonstrated satisfactory stability performance. As the basic
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injector O/F and flow rates (as they affect delta P) were varied, varying
degrees of stability were achieved as indicated by the traces. A stability

map for the spray cooled runs is shown in Figure 2-45 .

It was concluded that the high delta P injector (ES156903N1) provided
adequate stability and performance for use in the WLR-23 rig engine test

series.
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B. WLR-23 Rig Engine Evaluation

This section describes the planned test program and the test results for the
series of tests using the WLR-23 rig engine, serial number 1, build 1 during

the period between May 18 and May 26, 1966.
Test Plan

The test objectives were (1) to acquire hot firing engine test data on the
thermal and structural characteristics for comparison to analytical predic-
tions, and (2) to accumulate engine test time to evaluate durability

characteristics.

The planned test series was to be conducted in the following sequence:

Test No. Duration Purpose
1 10 sec Check instrumentation
2 60 sec Gather data for comparison with

analytical predictions

3 120 sec Same as test number 2 plus endurance
4 250 sec Same as test number 2 plus endurance
5 500 sec Same as test number 2 plus endurance

During the tests, the following parameters were to be monitored as a basis for

unscheduled shut down of the engine:

. Chamber Pressure - An abnormal reduction of chamber pressure would indicate

excessive wear or erosion of the nozzle throat.

Cavity Pressure - An indication of cavity pressure above ambient would

indicate chamber leakage.

Watchband Temperature - Temperature would be monitored to insure that it did

not exceed predicted design values.

VRIGHT AERONAUTICAL DIVISION * CURTISS-WRIGHT CORPORATION * WOOD-RIDGE, N. J., U.S.



Watchband and Wedge Assembly Deflection - Wide variations from predicted

values would be investigated before allowing a test to continue,

Visual Observation =~ Sparking or change in flame color would indicate that

the chamber material was being consumed.

The instrumentation provided for the initial rig engine evaluation is
summarized in TableIII. The schematic of the test stand system and installa-
tion and rig engine instrumentation, Figures 2¢46 and 2+~47, indicate

the instrumentation locations and pertineunt features.

Test Results

The rig engine configuration has been described in the first quarterly report.
Figures 2-48 and 2-49 show the engine installed on the test stand while

Figure 2-50 shows additional data on engine instrumentation.

In accordance with practice established during the WLR-21 engine program, a
pressure check of the engine was made prior to each run, A schematic of the
pressure test setup is shown in Figure 2-51. The engine throat was blocked
off with a rubber stopper and approximately 100 psi pressure was applied
through the injector. The pressure was then allowed to decay while being
traced on Bristol recorders through normal Pc instrumentation. The slope of
the curve indicates the tightness of the engine. The pressure decay curve
prior to the initial firing is shown in Figure 2-532 along with curves for
each subsequent test. Based on previous experience, the pre-test decay curve

was completely satisfactory.

Run #23-46 - The initial test, planned for 10 seconds duration to check out
instrumentation, was conducted in accordance with plan. The performance,
shown in TablelV, indicated satisfactory parformance and normal operating

conditions,

Examination of the instrumentation traces was made after the run. The only
abnormal indication appeared to be deflection probe readings which were
running a few thousandths higher than predicted. Since this instrumentation

is repeatable only within a band of approximately 0.001 inches, these
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readings were considered to be satisfactory at the time.

A pressure check of the engine was made after test and was considered satis-
factory. A visual examination of the inside of the engine with a boroscope

showed no abnormal conditions.

Run #23-47 - A 60 second duration test, planned to gather data for compari-
son with analytical predictions, was cbmpleted in accordance with plan,
During the test, watchband temperature, chamber pressure, cavity pressure,
and deflection probe readings were monitored. The chamber pressure appeared
to be dropping at a rate somewhat in excess of the prediction. However, the
cavity pressure remained at zero throughout the firing, indicating that the
engine was pressure tight., The deflection probe readings rose éonsiderably
higher than predicted. However, it was decided duringkthe test not to shut

down but to continue for the planned duration to obtain usable data.

The engine performance is provided in Table IV, The deflection probe read-
ings, plotted on Figure 2-53 , are substantially in excess of the predicted
values. The watchband thermal history as shown in Figure 2-54 agrees essen-
tially with the prediction. Chamber and cavity pressures as well as the
temperatures of the swirl cup and deflection probe as a function of time are

shown in Figures 2-55 and 2-56

The engine was examined after test with a boroscope and no discrepancies were
found. 1In addition, the engine was pressure checked and the decay curve

indicated the engine was pressure tight and satisfactory for further rumning.

Prior to further testing, the deflection probe data was converted to equiva-
lent PG inner wall temperatures. The resultant temperature history is shown
in Figure 2-57 compared with the analytical prediction. This shows that the
engine was running substantially hotter than predicted and required adjust-

ment of the spray cooling flows and/or configuration to reduce the temperature.

The higher temperatures presented two problem areas. First, the stresses in
both the PG and the watchband were substantially increased due to the increase
in temperature. This is because the temperature produces an increased expan-

sion of the PG ring (formed by the wedge land) which results in increased

WRIGHT AERONAUTICAL DIVISION * CURTISS-WRIGHT CORPORATION ¢ WOOD-RIDGE., N, J., U.



deflections of the watchband. It is estimated that the higher temperatures
produced approximately 20-25% increase in PG land stress. In addition, the
yiéld strength of the watchband material was exceeded causing a 0.006 inch

radial perwmanent set in the watchband.

Run #23-48 - It was decided to use the rig engine rather than the copper
chamber, to evaluate changes in spray cooling flow. Temperature would be
determined by using probe deflection readings. The cooling flow would be
adjusted by changing tank pressure settings. Twenty second firings were
planned to limit the stresses in both the PG and the watchband to satis-

factory levels.

An initial 20 second firing was made with oxidizer, fuel, and spray flows set
to design point to check the deflection readiﬁgs with thoss obtained during
the previous run to insure that the slight watchband offset would not cause
erroneous readings. The deflections obtained at 10 and 20 seconds for this
run have been included on Figure 2-53., The results agree closely with the
previous data. The run data is summarized in Table IV, The cavity pressure
remained constant at 15 psia., All operating parameters appeared normal

during the test,

Boroscope inspection after test indicated that there was a localized crushed
area approximately an inch to two inches from the injector end of the chamber
between adjacent wadges. A pressure check indicated that the engine could no
longer hold pressure. It was theun decided to remove the engine from the test
stand for further inspection. Figure 2-58 indicates the appearance of the
distressed area in the wedge assembly. Figure 2-59 shows the individual
wedges while Figure 2-60 indicates typical minor crushing that occurred in

some of the other wedges due to the overload condition.
The conclusions reached as a result of this series of tests are as follows.

. Overloading of the watchband and wedges caused by higher than predicted
temperatures during Run 46 resulted in crushing of the PG material in the
land area. The damage was not visible after the 60 second test, However,

it was most likely present in the form of small cracks which had not yet

10
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come to .the surface. The following 20 second test resulted in’ further

pcogression of the failure.

Adjustment of the sPray15001éd'inject6r éonfiguration'is reqhired to
reduce the thermal history to the predicated design values. The copper
engine correlation for,thé ACE engine design was done on the high fill
time (ES 156732) injector. The current injector (ES 156903N1) is
identical in swirl cup,dimeﬁsions, injection velocities, flow rates, and
injection pressure drdps. However, there is a difference in upstream
manifold size (reduced toypfoVide éatisfaqtofy response and tail-off
characteristics). This éhange has apparently had some effect on the spray
cooling film. Further in#eétigation'is required on the coppef chamber

with the current injector to reduce the slope of the temperature curve.

11
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WLR-23 RIG ENGINE TEST STAND INSTALLATION
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WLR-23 RIG ENGINE TEST STAND INSTALLATION
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PRESSURE DECAY TEST SCHEMATIC
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PRESSURE DECAY CURVES
WLR=-23 Rig Engine
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WATCHBAND TEMPERATURE
WLR~23 Rig Engine
S/N 1 Build No., 1
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CLOSE-UP OF WEDGE LAND
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C. Copper Chamber Spray Cooling Evaluation

A program was initiated using!the copper chamber to evaluate the effect of
spray cooling changes on the temperature history and establish the thermal

characteristics of the ES156903N1 injector without spray cboling.

Table Vv lists pertinent pafameters for the runs accomplished to date. A
comparison of the time-température histories for the spray cooled runs is
given in Figure 2-61 . It indicates that a spray flow rate of between
0.054 to 0.060 1b/sec may:bé’Sufficient to achieve an acceptable temperature
history. Run 23-1 and the analytical correlation upon which the rig engine

design was based are shown for comparison.

Fﬁrther exploration is required and some compromises may be necessary in

overall O/F ratio and total flow rates to achieve the desired temperature history
design objectives. Increasing the spray flow rate lowers the fuel flow in

the swirl cup. Thus swirl éup'O/F»ratio is increased toward the stability
limits established during the injector de#elopment program. The added spray
flow through a fixed orifice size would cause the pressure drop to increase

by a square function. Increased orifice size is thus required to prevent

such a pressure penalty with the integral injector.

Four dry runs were also made to determine whether a difference exists between
this injector and the high £ill time injector used to provide data for the
original design. Figure 2-62 shows the'time-temperature histories. The

original design data is provided for comparison.

It appears that the change in inlet manifolding caused some subtle change in

combustion characteristics réesulting in a higher heat loading of the chamber.

In summary, spray'cooling evaluations to date indicate a substantial increase
in flow is required to achieve satisfactory temperature levels with the
existing injector. Furthér,teéting is réquired to establish a new design
point with increased spray piptle orifice size and within the stability

limitiations of the injector.
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II1 DESIGN AND ANALYSIS

A. Watchband Stress Analysis-Reivéw

A review of the method of anaiysis.of the watchband was made as part of the
investigation of the watchband installationbproblem.. The purpose of the
review was to insure that_all elements of loading Which contribute to the
total stress in the watchband were properly considered. It was recognized
that both tensile and change-in-curvature stresses exist and add to those
caused by bending, These were thought to be insignificant and therefore had

not previously been included in the analysis.

A free body sketch of the hoop loading on a typical beam element in the watch-
band is shown in Figure3-la . - This loading produces a-bending stress about
a radial axis through the beam and a tensile stress normal to the beam cross-

section.

Figure 3-1b illustrates the change-inicurvéture effect which develops a second
bending stress in the beam as the watchband is stretched. 1In this case the

bending axis is perpendicular to the radial axis as shown in Figure 3~lc.

Figure 3-1d shows the superimposed effect of all the stresses acting in the
beam. Added together they give:total watchband stress. The maximum stress

occurs in the outer fiber in one corner of the beam at the supported ends.

The results of this study are summarized in graphical form on Figure3-2 .,
Total watchband stresses are plotted against radial interference fit at
assembly for t = 0, 50, 100 and 500 seconds of,firing at Sections A, B, D
and F in the engine. The wedge inner land streéées at the throat (Section F)
are also shown. These compressive stresses‘indicate the degree of sealing
that exists for a particualr'waﬁchband interference fit and firing time.
Since the most critical seal along the wedge land is at the throat, these

stresses are an important consideration in the engine design,

Figure 3-3 compares total watchband stress and bending stresses due to the

hoop load against firing time for 0.025 inches radial interference fit at

13
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assembly. Figure 3-4shows total watchband stress versus firing time for a

0.023 inches radial interfsrénce'fit at assembly.

In the first Quarterly Repdftfﬁhé'radial Wétchbsnd interfersnce’fit'was
established at 0.025 inéhestbésed on thé results of the tensile specimen

pull test. This fit assuredfaitight inner iand seal at the throaﬁ throughout

a 500 second test. SuPerimposing the effects of ﬁension and change-in-curvature
on the bending strésses-iﬁ fhevwatéhbahd résﬁlts in a highér total stress.

(See Figures 3-2 and 3-3)};s 7 |

By reducing the radial 1nterference at assembly to between .022 - .023 inches,
the throat seallng load is malntalned and the watchband stresses are 1owered

(See Figure 3-4 ) to values,con31dered satisfactory.

Although the calculated watchband stress exceeds the yield strength of the
material at Sections B and D, the stress results almost completely from beam
bending and is a maximum only at the outer surfaces. The local nature of the
maximum stress condition minimizes its effect on the overall structure and
the ductility of the material allows a sufficient load redistribution before
the watchband function is diminished. A comparision of the critical stresses
in Section D with the tested material properties of Rene’ 41 bears out: this

conclusion.

Time, sec “100 500
0.2% vield, PSI 131,000 103,000
Ultimate Tensile Strength, PSI 180,000 125,000
Temperature °F - ‘400 1400
Total Watchband Stfess, PéI 137,800 110,800-

The slight overstress at both time intervals is well below the ultlmate

strength and therefore w1th1n the range of ductility.

By reducing the radial interference fit from 0.025 inches to 0.023 inéhes the

following objectives WéreAthus;obtained:

14
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. Lower overall watchband stresses,
. Greater safety regarding sensitivity to material propérties.

. The requirements for a 500 second run are'met.v
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TOTAL WATCHBAND STRESS VS FIRING TIME
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B. WLR-23 Rig Engine Data Analysis

After the first series of WLR-23 rig engine tests an analytical study was
made to determine the cause of the machanical problems.  The deflection

probe data (Figure 3-5) was used to analytically derive via an iterative
method'the temperature at the inner wall of the wedge chamber. Normally
this data is adjusted to correct for temperatures of the rig housing and
deflection probe rod. However, the temperature rise at these locationms,

Figure 3-6,was not enough to affect theydeflection probe readings withiﬁ

the first four decimal places and no temperature correction was made.

Figure 3-7 shows the inner wall temperature history (based on the deflection
probe data) vs time compared with the analytical predictions. It can readily

be seen that the engine ran substantially hotter than predicted.

Figure 3-8 shows the watchband stresses calculated based on the derived
engine temperature history. The high engine temperatures resulted in -
increased watchband deflections and stress levels. The stresses are over
the ultimate tensile capability of the material based on the assumption
that the material is elastic and that it conforms to Hookes Law. Above
the proportional limit, however, the overstressed areas deform plastically
and the load is redistributed. Thus, the actual stresses in the watchband

beam are much lower than if the material remained perfectly elastic.

The highly stressed region on the watchband beam is locallized at the
surface. Therefore, the volume of material affected is small and the over-
all strength of the watchband is not appreciably affected. 1Inspection

of the watchband showed no damage other than a 0,006 inch radial set, This
value approximates calculated values based on the watchband test specimen
data. No cracking or fracturing of the material took place and the watch-
band is satisfactory for use for the next series of tests. It will, however,
be reground to eliminate out ofbroundness and a slight taper that resulted

from the initial tests.

The higher watchband deflections caused by the increased inmer wall temp-
erature in turn provided added restraining forces on the PG wedge land.

These forces were calculated and are plotted in Figure 3~9. The average

16
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land stress is about 30Z higher than predicted which resulted in crushing
of the lands.

In summary, the mechanical problems associated with the initial series of
engine tests are the result of the engine running substantially hotter

than predicted. Both the abnormally high watchband stresses that caused
permanent deformation of the watchband, and the increased wedge land stresses
that resulted in crushing of the land can be eliminated by reducing the
engine operating temperature regime. The initial design temperafure
predictions were made on the basis of using the high fill time injector
(ES156732). The'current'injector being used (E5156903N1)'wascopied directly
from the original except for a reduction in upstream manifolding to improve
response requirements. Subsequent test of this injector indicated no change
in stability characteristics. However, there apparently ié a substéntially
ﬁigher heat load on the engine ‘due to the use of this injectbr. It appears
that added spray cooling development is reQuired to reduce the temperature

to satisfactory levels.

17

NRIGHT AERONAUTICAL DIVISION * CURTISS-WRIGHT CORPORATION ¢ WOOD-RIDGE, N. J.,



DEFLECTION PROBE READINGS
WLR-23 Rig Engine
Run No. 23-47
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WEDGE LAND STRESS DATA
WLR-23 Rig Engine
Serial No, 1 Build No, 1
Run No. 23-47
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C. Flight Engine Preliminéry Design,

Design work has started on the Flight Engine Configuration, Figure 3-10

The most significant change in going from the rig engine to the flight design
is the relocation of'the axial loading belleville springs. The springs have
been moved to the injectorvend to allow for the exit cone attachment at the
aft end. These Rene’ 41 springs are sized for both load and thermal compensa-

tion requirements.

The one piece housing has integral fianges, one for the injector and another
for the aft closure and exit cone mount. Material selection will be based on
thermal and structural requireménts. The aft closure ring retains the thrust

chamber assembly and loads the belleville springs.

The injector, shown in Figure 3-11 features an integral sixteen orifi:e
spray ring with internal fuel connections. The internal spray ring replaces
16 individual rig engine pintles. This injector will be used with a Moog
bipropellant valve which requires a flush sealing surface at the inlet side.
A small adapter pad used with the valve provides attaching holes and brings
the injector-valve assembly within the required four inch diameter envelope.

Purge fittings and pressure taps are provided in the adapter pad.

The injector configuration shown in Figure 3-11 will be used for rig engine
tests and later reworked for the flight engine as shown in Figure 3-12

The extra diametral stock in the rig configuration provides space for an
extra chamber pressure tap, a spray manifold pressure tap, and a variable

orifice screw for regulating spray manifold flow.

Tentative design data fof the fuel spray ring is given below:

o

W; Spray Flow -~ 1b/sec 0.0256
AP, Spray Orifice - psi 28
Diameter, Spray Orifice - in 0.010
CD, Spray Orifice ' 0.75
Actual Velocity, Spray Orifice - ft/sec 51.6
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A thermal model is being constructed for the flight engine heat transfer
analysis. The new model differs from the rig version due to thé additional
nodal points for the relocated;beileville springé, the flight housing and

aft closure ring. No changeé are needed in the thrust chamber assembly. The
thermal model will include the caléuléted film coefficients and latest data

derived from the rig engine tests.
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PRELIMINARY FLIGHT ASSEMBLY

20-564 Figure 3-10
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IV. _PLANNED FUTURE ACTIVITY

Activity planned for the third quarter of the program is outlined below.

1) Spray Cooling Evaluatiqh'.“

Evaluation of changes to the spray cooling/injector configuration will
continue into the third'quarter in order to provide an arrangement that
will result in satisfactory chamber temperatures. Completion of this

effort is targeted for late June 1966.

2) Rig Engine Evaluatioh‘Tésting

The second series of rig engine evaluation tests will be initiated when
item (1) above is complete. This series of tests is scheduled for com-

pletion by early July 1966.

3) Flight Configuration Design

Design studies of the flight configuration engine will continue into the
third quarter. The second series of rig engine tests should provide

sufficient data to finalize the flight engine design.

4) Fabrication of the Flight'Engine

Fabrication of detail parts required for the flight engine will be initi-
ated early in August 1966. Completion of the first engine for test is

scheduled for the start of the fourth quarter.

5) Development of Integral Spray Injector

The development and test of this item is being held pending the outcome of
item (1) above. Initiation of test activity on this injector is currently

scheduled for mid—Julyk1966.
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INJECTOR PERFORMANCE DATA
ES156903N-2 16 PORT INJEGTOR

LOW ORIFICE A P DESIGN

RUN NO. 23 -3 -4

Oxidizer System

Feed Pressure psig 189 188

Flow 1b/sec .208 .210
Fuel System |

Feed Pressure psig 163 150

Flow 1b/sec 112 .102

Spray System

O/F Ratio 1.86 2.06
Pc psia 98.8 94 .8
P swirl cup psia 107 103
Psc/Pc 1.08 1.07
At inz 544 o544
c* ft/sec 5400 5320
c* % 95.2 94 .8
7
Stability
Oscillation cps 1200 1200
Amplitude psi 18 20
Amplitude as % of Pc ¥ 9.1 10.5
Remarks Random Peaks & Random Peaks &
Incipient Incipient
Chugging Chugging
Type Type
Instability Instability
Table I

VRIGHT AERONAUTICAL DIVISION ¢ CURTISS-WRIGHT CORPORATION * WOOD-RIDGE, N. J., U.

S.

A.
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WLR~-23 RIG ENGINE INSTRUMENTATION

Serial Number 1, Build 1

Instrument
Item Parameter Qty. Type Readout Design Values
1 Oxidizer Tank Press. 1 Wianko Bristol 300 psia%
2 Oxidizer Line Orifice- 1 Wianko Bristol 280 psia*
Upstream Press.
3 Oxidizer Line Orifice- o1 Wianko Bristol 185 psia*
Downstiream Press (Eng. Feed)
4 Oxidizer Line Orifice- 1 Kistler CEC AC only
Downstream Press (Eng. Feed)
5 Oxidizer Flow 1 Potter Bristol 0,204 1b/sec
& CEC
6 Oxidizer Flow 1 Ramapo Bristol 0.204 1b/sec
7 Oxidizer Temp. 1 Chromel- Bristol -
Alumel
8 Fuel Tank Press. 1 Wianko Bristol 265 psia*
9 Fuel Line Orifice- 1 Wianko Bristol 250 psia¥*
Upstream Press.
10 Fuel Line Orifice- 1 Wianko Bristol 195 psia*
Downstream Press (Eng. Feed)
11 Fuel Line Orifice- 1 Kistler CEC AC only
Downstream Press (Eng. Feed)
12 Fuel Flow 1. Potter Bristol .102 1b/skc
& CEC
13 Fuel Flow 1 Ramapo Bristol .102 1b/sec
14 Fuel Temp. 1 Chromel- Bristol -
Alumel
15 Fuel Spray Tank Press. 1 Wianko Bristol 635 psia
16 Fuel Spray Line Orifice- 1 Wianko Bristol 630 psia
Upstream Press.
17 Fuel Spray Line Orifice- 1 Wianko Bristol 165 psia
Downstream Press.
18,19 Chamber Press. 2 Wianko Bristol 100 psia
(Swirl cup lip)
20 Swirl Cup Press. 1 Wianko Bristol 105 psia
21 Chamber Cavity Press. 1 Wianko Bristol 15 psia
22 Thrust 1 Strain Gage Bristol 60 1b.
23 Oxidizer Solenoid Valve Curxent 1 -—- CEC For Events Only
24 Fuel Solenoid Valve Current 1 - CEC For Events Only
25,26 Chamber Radial Deflection- 2 Linear Bristol 0.025 inch
Station 0.40 Injector End Transformer
27,28 Chamber Radial Deflection 2 Linear Bristol 0,025 inch
Station 1.21 Mid-Chamber Transformer
29,30 Chamber Radial Deflection 2 s Linear Bristol 0.025 inch
Station 2.83 Nozzle Ent. Trans former
31,32 Chamber Radial Deflection 2 Linear Bristol 0.025 inch
Station 4.40 Nozzle Throat Trans former
33,34 Watchband Temp. 2 Chromel~ Bristol 1500°Fk*
Alumel
35,36 Housing Temp-Chamber 2 Chromel- Bristol 200°F#*k
Alumel
37,38 Housing Temp-Nozzle Throat 2 Chromel- Bristol 200° Fik
Alumel
39 Swirl Cup Temp. 1 Chromel- Bristol 1000° Fé*
Alumel

Notes: * Estimated values based on previous test stand component pressure drops.

%% During soak period

20-257 Table III

1
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Calibration Range

0-750 psi
0-750 psi

0-750 psi
0-100 psi
0.14-0,.9 lb/sec

0.07-0.2 1b/sec
0-200°F

0-750 psi
0-750 psi

0~750 psi
0-100 psi
0 09~0.60 1b/sec

0.05~0.16 1b/see
0-200°F

0-1000 psi
0-1000 psi

0-750 psi
0-200 psi
0-200 psi
0-200 psi
0-100 1b.

Not Applicable
Not Applicable
0-.050 inch
0-.050 inch
0-.050 inch
0-.050 inch
0-2000°F
0-500°F
0-500°F

0-1000°F

WOOD-RIDGE, N.

Accuracy

1%
1%

1+1+

1%

1+

5%

I+

I+

0.
0.

1+

1%
1%

I+ 1+

+ 1%

+ 0.
+ 0.
+ 0.

+ 0.

J..

0.5%

5%
5%

5%
5%
5%
5%

Uu.s. A



IRIGHT AERONAUTICAL DIVISION

PERFORMANCE DATA

§294 System

Tank Pressure - psig
Engine Feed Pressure - psig
Flow Rate - lbs/sec

MM System
Tank Pressure - psig
Engine Feed Pressure - psig

Flow Rate - lbs/sec

MMH Spray Cooling System

Tank Pressure - psig
*0rifice Upstream Pressure - psig
%*Orifice Downstream Pressure - psig
Flow Rate - lbs/sec

Total Propellant Weight Flow - lbs/sec

Oxidizer/Fuel Ratio

Chamber Pressure - psia

Swirl Cup Pressure - psia

C*

C* Efficiency *% - 9,

23-46
307

188
0.212

242
182
0,101

481
474
116
0.025
0.338
1.68
105
112
5480

96.2

Notes: * Calibrated fuel spray line orifice

%% Uncorrected for heat loss to the chamber

Table IV

Run Numbgg
2347
307

188
0.214

240
182
0.102

482
477
122
0.025
0.341
1.68
105
112
5435

95.4

¢ CURTISS-WRIGHT CORPORATION * WOOD-RIDGE,

23-48
308

192
0.215

242
184
0.102

482
472
120
0.025
0.342
1.69
105
112
5420

95.1



SPRAY COOLING EVALUATION WITH COPPER CHAMBER
ES156903N1 Injector

Run No. 23- 55 56 57 58 59 60 61 62

Chamber Pressure psia 105 105 104 105 101 101 101 101
Swirl Cup Pressure psia 111 111 110 111 108 108 108 108
Oxidizer Flow 1b/sec 0.192 0.192 0.196 0.192 0.211 0.213 0.228 0.228
Fuel Flow 1b/sec  0.095 0.096 0.098 0.087 0.106 0,104 0.095 0.095
Spray Flow 1b/sec  0.060 0.044 0.028 0.054 - - - -
Total Flow lb/sec  0.347 0.332 0.322 0.333 0.317 0.317 0.323 0.323
O/F guirl Cup - 2.02 2.0 2,0 2.2 1.99 2.06 2.4 2.4
O/F Total - 1.24 1.37 1.56 1.36 1.99 2.06 2.4 2.4
C* ft/sec 5260 5490 5640 5460 5570 5580 5460 5460
C*q’ % 93.2 96.3 99.0 97.0 97.5 98.5 98.0 98,0
Table V

RIGHT AERONAUTICAL DIVISION ¢ CURTISS-WRIGHT CORPORATION ¢ WOOD-RIDGE., N. J.,



